An Empirical Analysis of the Incidence of Location on Land and Building Values by Robert J. Gloudemans **** Prepared Under a David C. Lincoln Fellowship in Land Value Taxation **** for **Lincoln Institute of Land Policy** Cambridge, Massachusetts December, 2001 #### Abstract Although it is universally acknowledged that property values are first and foremost a function of location, the extent to which location affects land versus building values has not been empirically examined. Traditional valuation models either make no attempt to separate land and building values or make implicit, untested assumptions about the extent to which various location features impact land and buildings. This paper tests various assumptions concerning the incidence of location factors on land and building values and evaluates the composition of total value between the two parts. The research builds on research conducted in 2000 under a David C. Lincoln Institute Fellowship in Land Value Taxation that explored the use of modern computer-assisted mass appraisal (CAMA) tools to estimate land values in urban residential areas, often with comparatively few vacant land sales. That research concluded that CAMA models combining vacant and improved sales can be used to predict land values with acceptable reliability, even when some neighborhoods lack vacant land sales altogether¹. Thus, the phase-in of a site valuation tax scheme in which buildings were untaxed or taxed at a lesser percentage than land could continue to use the same sales-based mass appraisal tools commonly used for improved residential properties. Utilizing the same three data bases as the prior research project, this paper evaluates the extent to which location affects land and building values and how total property value is broken out between the two components. The research results indicate that, while location impacts both land and buildings, on a percentage basis the impact on land is far greater. It also suggests that traditional attempts to separate values between land and buildings are likely unreliably and may well underestimate the contribution of the land component. A reliable decomposition would seem to requires the incorporation of both vacant and improved sales, at least until more empirical experience is gained with respect to typical land-to-building ratios among various property types and market areas. ¹ See Robert J. Gloudemans, "Implementing a Land Value Tax in Urban Residential Communities," <u>Lincoln Institute of Land Policy</u> Working Paper, 2000 (Product Code WP00RG1). ### **Table of Contents** | Introduction | 1 | |--|----| | Models Tested | 2 | | Model Results - Improved Only Sales | 4 | | Model Results - Vacant and Improved Sales | 6 | | Conclusions | 7 | | Exhibit 1 - Summary Results for Models with Improved Only Sales | 9 | | Exhibit 2 - Summary Results for Models with Vacant and Improved Sales | 10 | | Appendix 1 - Format of Traditional Feedback Models (Vacant and Improved Sales) | 11 | | Appendix 2 - Results of Nonlinear MRA for Traditional Feedback Model Structure:
Improved Sales Only | 13 | | Appendix 3 - Results of Nonlinear MRA for Traditional Feedback Model Structure: Improved Sales Only | 19 | ### An Empirical Analysis of the Incidence of Location on Land and Building Values #### Introduction It is universally acknowledged that location can and usually does heavily influence property values. All valuation models incorporate location variables. However, what is not so clear is whether location influences affect land value only or both land and building values and, if the latter, the extent to which building values are also impacted. In large part model builders have ignored the questions posed above while making implicit assumptions about the incidence of location influences. Mass appraisal models using the sales comparison approach to value are usually calibrated by either multiple regression analysis (MRA) or the adaptive estimation procedure (AEP), more generally known as "feedback". MRA models generally take the simple, linear form: $$V = B_0 + B_1 * X_1 + B_2 * X_2 + ... + B_K * X_K$$ where B_0 is a constant, X_1 ... X_K are property variables for location and improvement features (neighborhood, lot size, living area, age of structure, etc.), and B_1 ... B_K are the corresponding regression coefficients. Notice that such models estimate a total value only and do not explicitly distinguish land and building variables. While some variables are clearly location or land related and others obviously represent building features, it is impossible to say that one affects land or building value only. For example, assume that a premium neighborhood assumes a coefficient of \$45,000 and that being adjacent to a green belt contributes \$18,000. Do these influences accrue to land only or to both land and buildings value? If the later, what portion constitutes land value and what part building value? Note also that the constant (B_0 in the above formula) can be substantial: typically 15 to 40 percent of total value. By its nature, this includes the fixed portion of both land and building value and cannot be attributed to solely one or the other. Feedback models generally take the following format: $$V = \pi GQ * ((\pi LQ * \Sigma LA) + (\pi BQ * \Sigma BA))$$ where πGQ = product of global qualitative factors (time and location) πLQ = product of land qualitative factors (lake, river, park, traffic, etc.) $\Sigma LA = \text{sum of land additive components (lot size)}$ πBQ = product of building qualitative factors (construction quality, design, condition, etc) $\Sigma BA = \text{sum of building additive components (main living area, total and finished basement areas, garages, etc.)}$ Unlike MRA, the feedback model is decomposable into land value (LV) and building value (BV): $$LV = \pi GQ * \pi LQ * \Sigma LA$$ BV = $$\pi$$ GQ * π BQ * Σ BA. Note also that the model assumes that location (neighborhood), a general qualitative factor (GQ), is assumed to affect land and building values proportionately, meaning that most would accrue to buildings, and that site amenities (LQ), such as commercial encroachment or location next to a golf course or lake, are assumed to affect land value only. This paper evaluates these assumptions empirically, with a view to determining the extent to which location and site influences affect land and building values for residential property. It also examines the extent to which total value can be reliably partitioned between land and buildings. Three data bases are examined: Ada County (Boise), Idaho; Jefferson County (suburban Denver), Colorado; and the Clareview market area in Edmonton, Alberta.² #### **Models Tested** The traditional feedback model and four alternative model specifications were tested and compared: 1. Traditional Feedback Model: neighborhood affects land and building values proportionately and location amenities (traffic, golf course, waterfront, etc.) affect land only: $$V = \pi GQ * ((\pi LQ * \Sigma LA) + (\pi BQ * \Sigma BA))$$ 2. Neighborhood and location amenities affect land value only: $$V = \pi GQ * \pi LQ * \Sigma LA + \Sigma BA * \pi BQ$$ 3. Neighborhood and location amenities proportionately affect both land and building value: $$V = \pi GQ * \pi LQ * (\Sigma LA + \Sigma BA * \pi BQ)$$ 4. Neighborhood and location amenities affect building values one-half as much as land values (e.g., if a premium view adds 30% to land value, it would add 15% to building value): $$V = \pi GQ * \pi LQ * \Sigma LA + (1 + .5 (\pi GQ * \pi LQ - 1)) * \Sigma BA * \pi BQ$$ ² There were 4,836 usable sales from 1996-1998 in Jefferson County; 4,382 sales from 1996-1999 in Clareview, and 12,821 sales from 1997-1999 in Ada County. All models tested showed inflation adjustments. 5. Neighborhood and location amenities affect building values at a market-calibrated percentage of land value: $$V = \pi GQ * \pi LQ * \Sigma LA + (1 + p (\pi GQ * \pi LQ - 1)) * \Sigma BA * \pi BQ$$ where p is the market-calibrated percentage. For example, if p = .40, neighborhood and location amenities would affect building values 40 percent as much as land values. The value of p in model 5 is of considerable theoretical and practical interest from both an appraisal and land policy viewpoint as it indicates the extent to which location impacts building along with land values. For example, will increased traffic congestion lower land value only, or also impact residential building values? Will setting aside green belts and parks enhance building values along with land values? Each of the five models delineated above was tested on all three data bases twice: once using improved sales only and once using both vacant and improved sales. Since most single-family valuation models only use improved sales, a comparison of the first set of models better answers the question of which is likely to provide the best empirical results. Is the traditional feedback model the best formulation or is there a better one? However, the latter set of models that incorporate vacant land sales will provide a more reliable allocation between land and building values, because inclusion of vacant sales helps ensure that estimated land values are essentially correct (otherwise there is no control mechanism to unsure that land value estimates match actual values). The models were calibrated using nonlinear regression analysis, which allows the model builder to specify and calibrate any well-formulated model structure.³ Further, although the models were calibrated with SPSS, since nonlinear regression uses a standard algorithm, the same results can be obtained with any other statistical package incorporating nonlinear regression. Variables available for analysis in each of the three data bases included geographic area (MLS area
or neighborhood), lot size, living area, secondary areas (basements, porches, etc.), garage area, construction quality, building style and age, sale date, and such miscellaneous items as fireplaces and swimming pools. In addition, the Edmonton and Jefferson County data bases included relevant location amenities: waterfront, golf course, commercial encroachment, traffic, and so forth. The traditional feedback model formulations for models with both vacant and improved sales looked as follows: ³In contrast, traditional linear regression analysis is incapable of calibrating "hybrid" models encompassing both additive and multiplicative components. A feedback algorithm would only be applicable to compatible model structures and would give somewhat different results depending on the software chosen (run times would also be much longer). As with regular (linear) MRA, nonlinear regression works on the principle of minimizing the squared errors from the model, whereas as feedback seeks to minimize the absolute errors. ``` V = TIME_FAC * NBHD_FAC * [SITUS_FAC * BLV * LSIZ_FAC * VAC_FAC + (LIVAREA * STYLE_FAC + SEC_AREAS + GARAGE + MISC) * QUAL_FAC * PCT_GOOD] ``` where TIME_FAC = time (inflation) factor, NBHD_FAC = neighborhood factors, SITUS_FAC = factors for site amenities such as lake and view, BLV = base land value (value of the typical sized lot in the "base" neighborhood), LSIZ_FAC = land size adjustment, VAC_FAC = factor for vacant (versus improved) land, LIVAREA = living area, STYLE_FAC = factor for design type, SEC_AREAS = secondary areas (basements, decks, patios, etc.), GARAGE = garage size, MISC = miscellaneous items (pools, fireplaces, air conditioning, etc.), QUAL_FAC = factor for construction quality, and PER_GOOD = percent good dependent on age/condition. The corresponding models with improved only sales were identical except that VAC_FAC was omitted. Of course, the specific location amenities, building styles, secondary items, and so forth differed somewhat among the three data bases. Appendix 1 shows the specification of the traditional feedback model with vacant and improved sales in each of the three areas in SPSS format.⁴ The other four model specifications described above used the same variables; they differed only in their assumptions about how the location-related variables affect land and building values. ### **Model Results - Improved Only Sales** Nonlinear regression was used to calibrate the traditional feedback model specifications for each data base. Appendix 2 contains the results. Adjusted R-Squares were .959 in Jefferson County, .882 in Clareview, and .909 in Ada County. In general, all the variables behaved as expected, expect that the size adjustment variable was statistically insignificant with the wrong sign in the Ada County model and was therefore excluded. Some of the site amenity factors are quite large, for example, a multipliers of 2.10 for waterfront location and 1.27 for parks in Jefferson County. Recall, however, that these factors apply only to land value in the traditional feedback formulation. Interestingly, exponents for land size factors (actual lot size divided by typical lot size) ranged from 0.19 to 0.34, indicating that land values increase modestly with size. Exhibit 1 shows summary results for all five models with improved only sales. Probably the most salient aspect of the results is the amazing similarity in model performance measures across all five models. For example, in Jefferson County adjusted R-squares are all .959, medians range from .998 to 1.003, and the coefficient of dispersion, a measure of the average spread of the sales ratios about the median ratio, ranges from 5.39 to 5.52, all very good. Performance measures are similarly tight ⁴ Double asterisks in SPSS (**) indicate exponentiation. in the other two jurisdictions. In fact, in Ada County the other models failed to improve on the traditional feedback formulation. In the other two areas, improvements were marginal at best. Also of interest is the high base land values estimated for Jefferson County and Clareview. In Jefferson County, the estimated value of the typical lot (.20 acres) in the base neighborhood ranged from \$71,005 to \$82,587, equivalent to 47 to 55 percent of the average sale price in the same neighborhood. In Clareview the percentages were all slightly above 0.50. In contrast, in Ada County the percentages were of the textbook variety: 18-22 percent. Of course, in Jefferson and Clareview the highest land values were obtained in model 2, in which neighborhood and location adjustments applied to land only (Ada County had no site amenity variables). The seemingly high land values obtained in two of the areas and highly different, more traditional results in the third call into question the reliability of the land and improvement values developed by feedback, as well as other model specification and calibration techniques. To be sure, the total value estimates appear highly accurate, but the allocation appears suspect. The primary reason is almost surely the lack of a constant in all five model specifications. For both Jefferson County and Clareview, traditional MRA models (not shown) develop sizeable constants, which represent the fixed portion of land and building values. With no constant, the present models undoubtedly "load up" on the base land value, which by default includes the fixed portion of building value as well as the fixed portion of land value. Recall that in Ada county, the size adjustment factor was immaterial, indicating that a constant was unnecessary. Thus, in that case, the base land value (BLV) probably represents land only and behaves reasonably. The bottom line is that real estate models have both fixed and variable elements and the fixed portions cannot be conveniently allocated between land and buildings, at least when models utilizes only improved sales. Feedback models may purport to break out land and building values, but the allocations are not necessarily realistic. Exhibit 1 also indicates the average adjustment made in the models for neighborhood and situs factors (waterfront, traffic, etc.).⁵ Situs factors are most important in Jefferson County, where there are considerable view, waterfront, golf, open space, traffic, and other influences. Its neighborhood adjustments are also the largest. Location adjustments are least important in Clareview, a more homogeneous area. As would be expected, in all three areas neighborhood adjustments are highest in model 2, in which they apply to land only. In both Jefferson County and Clareview situs adjustments are lowest in models 3-5, where they are spread to both land and improvements (versus land only in models 1 and 2). Finally, exhibit 1 also indicates the percentage by which neighborhood and situs adjustments were found in model 5 to impact buildings relative to land. Interestingly, the percentages are almost identical in Jefferson and Ada County: 0.44 and 0.45, respectively (both factors were easily significant at the 99% confidence level with t-values near 5.0). In Clareview, a more homogeneous market area, the variable was not statistically significant, indicating that the market could not distinguish the relative impact of location on land and buildings. Thus, where location influences ⁵ These were computed by averaging the absolute adjustments indicated by all such coefficients in the model. are substantial, the best evidence from the research is that, on a percentage basis, the incidence of location influences on building is slightly less than half that on land. What is probably most important from a valuation standpoint, however, is that assessment uniformity (particularly as measured by the COD) is similar regardless of whether location-related influences are attributed to land only or some combination of land and buildings. ### **Model Results - Vacant and Improved Sales** Each of the five models were rerun using both improved and vacant sales. The inclusion of vacant sales provides benchmarks to help ensure a proper allocation of value to land and buildings. There were 232 usable vacant lot sales in Jefferson County (4.5%), 900 in Clareview (20.5%), and 2,184 in Ada County (14.6%). Appendix 3 shows results for the traditional feedback model (model 1 in appendix 1). Exhibit 2 summarizes key results from the models. While CODs for the improved sales are similar in all five models, CODs for vacant sales vary considerably. In all three cases model 5, in which the model determines the optimal allocation of location adjustments between land and improvements, produces the best results. Either the traditional feedback model (model 1) or a variation in which both neighborhood and situs adjustments are applied proportionately to land and buildings (model 3) produces the worst CODs for vacant land. As the exhibit shows, model 5 suggests that adjustments to buildings values are in the range of only 12% to 21% of the adjustments applicable to land (versus closer to one-half in the models with improved sales only). Thus, the models indicate that buildings values vary with location, but not nearly to the extent that land values do. The models also indicate that vacant and improved land can differ substantially in value. In Jefferson County, the models indicate that build-on land commands substantial premiums. In the best model (model 5), the factor for vacant land (VAC_FAC) suggests that vacant land is worth approximately 70% as much as improved land, producing a reasonable land-to-total value ratio of 23% when land values are viewed as if vacant (as is traditional for appraisal purposes). In Ada County, on the other hand, vacant land seems to command a slight premium, with the best model (model 5) yielding a vacant factor (VAC_FAC) of 1.22. Most interestingly, however, as in Jefferson county, for the typical parcel this also results in a land-to-total value ratio of 23%. Although the Clareview models produce
mixed results concerning the relationship between vacant and improved land values, all suggest highly similar land-to-total value ratios of 34% to 36%, which seem reasonable considering the comparatively modest residences in the area (average living area of 120 square meters, largely "standard" construction quality, and an average year built of 1982). Further the statistical reliability of the vacant land indicators (VAC_FAC in appendices 1 and 3) upon which these relationship are based is very high (for example, t-value for the variable in model 5 are 15.6 in ⁶ t-values for the variable were 6.8 in Jefferson County, 7.23 in Ada County, and 2.77 in Clareview, where location influences are considerably less. Jefferson County, 11.3 in Clareview, and 36.6 in Ada County). Contrast the indicated land-to-total value ratios in Jefferson and Ada counties with the much higher ratios of approximately 50% based on improved only sales (Exhibit 1). The results clearly caution against attempting to decompose estimated values, whether generated by feedback or otherwise, into land and building components unless vacant sales are included in the models so as to provide benchmarks ("reality checks") for the land component. It appears that valuation models can be reasonably decomposed into land and building values, but only if land sales are used to provide reliable benchmarks for vacant land values and only if models are properly and carefully specified. #### **Conclusions** The research sheds light on the degree to which neighborhood and location factors affect land versus building values and the relationship that can exist between vacant and improved land in various residential markets. The primary conclusions are summarized below. - 6. Mass appraisal models are remarkably robust in capturing neighborhood and location influences for improved properties. As long as the proper variables are included, almost any reasonable model formulation will succeed in incorporating proper adjustments. If location variables are assumed to impact land only, *percentage* adjustments will be comparatively high. If they are assumed to impact land and buildings equally, adjustment factors will be more modest, although in dollar terms adjustments may be approximately equivalent. - 7. Location affects both land and buildings, but in percentage terms the impact on land is much greater (in dollar terms the impacts can be similar). These differences become particularly apparent when both vacant and improved sales are included in models. - 8. Models that incorporate only improved sales are unlikely to be decomposable into reliable building and land values. In good part this is because the fixed portion of building values (site preparation and other fixed costs, developers profit, value of a residence in place, etc.) are likely to be attributed to location variables, which have a high fixed element. Incorporating vacant land sales into models can help develop more realistic land values with little loss in predictive accuracy for improved properties. - 9. Vacant and improved land values can differ substantially. In good part, this depends on how "improved land" is defined, that is, whether site preparation, landscaping, and the like are ascribed to land or buildings. In any case, being fixed costs in nature and not linked to other improvement variables, valuation models that lack a constant will tend to ascribe fixed building costs to land or location variables. Thus, other things equal, models will likely show improved land to be worth more than vacant land. Of course, these relationship can vary substantially among markets with the degree of services in place for vacant land and the remaining supply of and demand for vacant sites. - 10. For improved properties, a site value tax would require a workable definition of the value subject to tax, i.e., land as vacant versus land as improved. Modern mass appraisal methods are capable of producing reasonable estimates of the value of land as if vacant even in neighborhoods with no or few vacant land sales, provided there are other neighborhoods in the model with adequate vacant land sales to provide reality checks. Once experience is gained with such models, typical land-to-value relationships for various property types and markets could likely emerge. **Exhibit 1 Summary Results for Models with Improved Only Sales** | | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |----------------------|---------|---------|---------|---------|---------| | Jefferson County | | | | | | | Adj R-Square | 0.959 | 0.958 | 0.959 | 0.959 | 0.959 | | Median | 1.003 | 0.998 | 0.999 | 0.998 | 0.998 | | COD | 5.48 | 5.52 | 5.39 | 5.41 | 5.42 | | Base LV | 71,005 | 82,587 | 73,885 | 74,587 | 74,235 | | Land/Total | 0.47 | 0.55 | 0.49 | 0.49 | 0.49 | | Ave. NBHD Adj | 0.103 | 0.225 | 0.103 | 0.142 | 0.148 | | Ave. Situs Adj | 0.312 | 0.236 | 0.106 | 0.15 | 0.158 | | NBHD Bldg Factor | 1.00 | 0.00 | 1.00 | 0.50 | 0.44 | | Situs Bldg Factor | 0.00 | 0.00 | 1.00 | 0.50 | 0.44 | | Clareview (Edmonton) | | | | | | | Adj R-Square | 0.882 | 0.882 | 0.882 | 0.882 | 0.882 | | Median | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | COD | 5.82 | 5.80 | 5.82 | 5.82 | 5.82 | | Base LV | 63,780 | 65,900 | 62,285 | 63,779 | 61,089 | | Land/Total | 0.53 | 0.55 | 0.52 | 0.53 | 0.51 | | Ave. NBHD Adj | 0.037 | 0.067 | 0.037 | 0.049 | 0.027 | | Ave. Situs Adj | 0.035 | 0.033 | 0.017 | 0.023 | 0.012 | | NBHD Bldg Factor | 1.00 | 0.00 | 1.00 | 0.50 | 0.50 | | Situs Bldg Factor | 0.00 | 0.00 | 1.00 | 0.50 | n.s. | | Ada County (Boise) | | | | | | | Adj R-Square | 0.909 | 0.908 | N/A | 0.909 | 0.909 | | Median | 1.004 | 1.002 | N/A | 1.003 | 1.003 | | COD | 8.64 | 8.71 | N/A | 8.64 | 8.64 | | Base LV | 30,263 | 24,465 | N/A | 29,271 | 29,070 | | Base LV | 0.22 | 0.18 | N/A | 0.21 | 0.21 | | Ave. NBHD Adj | 0.060 | 0.318 | N/A | 0.099 | 0.106 | | Ave. Situs Adj | N/A | N/A | N/A | N/A | N/A | | NBHD Bldg Factor | 1.00 | 0.00 | N/A | 0.50 | 0.45 | | Situs Bldg Factor | 0.00 | 0.00 | N/A | 0.50 | 0.45 | Model 1: Traditional feedback formulation: NBHD adj applied to L/B; situs adj to land only Model 2: NBHD and situs adj applied to land only Model 3: NBHD and situs adj applied to both land and buildings (same rates) Model 4: NBHD and Situs Adj applied to buildings at half the rate applied to land Model 5: NBHD and situs adj applied to buildings at calibrated percentage of rates for land **Exhibit 2 Summary Results for Models with Improved and Vacant Sales** | | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |---|---|---|---|---|---| | Jefferson County | | | | | | | Adj R-Square Median COD - Improved COD - Vacant Base LV - Improved Vacant Factor Base LV - Vacant Land (Vac)/Total NBHD Bldg Factor | 0.962
0.998
5.60
14.60
51,079
0.77
39,535
0.26
1.00 | 0.961
0.998
5.56
12.42
75,740
0.45
34,386
0.23
0.00 | 0.960
0.999
5.42
19.87
56,554
0.84
47,505
0.31
1.00 | 0.961
0.998
5.54
12.65
47,423
0.86
40,736
0.27
0.50 | 0.962
0.998
5.57
11.61
48,793
0.70
34,301
0.23
0.21 | | Situs Bldg Factor | 0.00 | 0.00 | 1.00 | 0.50 | 0.21 | | Clareview (Edmonton) | | | | | | | Adj R-Square Median COD - Improved COD - Vacant Base LV - Improved Vacant Factor Base LV - Vacant Land/Total NBHD Bldg Factor Situs Bldg Factor | 0.952
1.001
5.87
10.73
47,250
0.89
42,053
0.35
1.00
0.00 | 0.952
0.999
5.89
10.15
53,323
0.77
41,165
0.34
0.00
0.00 | 0.951
1.001
5.88
10.70
30,868
1.39
42,814
0.36
1.00
1.00 | 0.952
1.004
5.89
9.95
33,083
1.29
42,776
0.36
0.50
0.50 | 0.952
0.999
5.89
9.55
40,401
1.06
42,946
0.
0.17
0.17 | | Ada County (Boise) | | | | | | | Adj R-Square Median COD - Improved COD - Vacant Base LV - Improved Vacant Factor Base LV - Vacant Land/Total NBHD Bldg Factor Situs Bldg Factor | 0.922
1.013
8.71
22.96
31,109
1.10
34,344
0.25
1.00
0.00 | 0.922
1.008
8.76
18.18
23,524
1.15
27,100
0.19
0.00
0.00 | N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A | 0.922
1.012
8.73
21.47
29,869
1.14
33,931
0.24
0.50
0.50 | 0.923
1.008
8.77
17.73
26,412
1.22
32,170
0.23
0.12
0.12 | Model 1: Traditional feedback formulation: NBHD adj applied to L/B; situs adj to land only Model 2: NBHD and situs adj applied to land only Model 3: NBHD and situs adj applied to both land and buildings (same rates) Model 4: NBHD and Situs Adj applied to buildings at half the rate applied to land Model 5: NBHD and situs adj applied to buildings at calibrated percentage of rates for land ## Appendix 1 Format of Traditional Feedback Models (Vacant and Improved Sales) ### **Jefferson County - Economic Area 4** ``` VALUE = TIMEFAC**MONTHS * N701**NB701 * N702**NB702 * N703**NB703 * N704**NB704 * N706**NB706 * N801**NB801 * N803**NB803 * N804**NB804 * N805**NB805 * N806**NB806 N807**NB807 * N808**NB808 * N809**NB809 * N810**NB810 * N811**NB811 N812**NB812 * N814**NB814 * N815**NB815 * N816**NB816 * N902**NB902 N903**NB903 * N904**NB904 * N1701**NB1701 * N1702**NB1702 * N1703**NB1703 * N1704**NB1704 * N1705**NB1705 * N1706**NB1706 * N1707**NB1707 * N1708**NB1708 * N1709**NB1709 * N1710**NB1710 * N1711**NB1711 * N1712**NB1712 *
N1713**NB1713 * N1715**NB1715 * N1801**NB1801 * N1802**NB1802 * N1803**NB1803 * N1804**NB1804 * N1805**NB1805 * N1806**NB1806 * N1807**NB1807 * N1808**NB1808 * N1809**NB1809 * N1810**NB1810 * N1811**NB1811 * N1813**NB1813 * N1814**NB1814 * N1815**NB1815 * N1816**NB1816 * N2901**NB2901 * N3001**NB3001 * N3004**NB3004 * ((TRAF_FAC**TRAFFIC * VIEW_FAC**VIEW * WATERFAC**WATERFNT * GOLF_FAC**GOLF * OPEN_FAC**OP_SPACE * PARK_FAC**PARK * COMM_FAC**COMM * SOIL_FAC**SOIL_PRB * BLV * LSIZ_FAC**LSIZ_EXP * VAC_FAC**VACANT) + (B1*LIVAREA * BSIZ FAC**BSIZ EXP * BI**BILEVEL * STY2**TWOSTORY * SPLT**SPLIT * AC**AIRCOND * BRICK**MASONRY + BSMT*TOTBSMT + FINBSMT*BSMTFIN + PORCH SF*PORCH + BALC SF*BALCONY + GARAGE*GARAGECP + WALK OUT*WALKOUT + BATH*BATHS + FIREPLAC*FPLACES + POOL*LINPOOL) * (QUAL2**Q2 * QUAL4**Q4 * QUAL5**Q5 * PERGOOD**PCTGOOD)). ``` ### **Edmonton - Clareview** ``` VALUE = TIMEFAC**MONTHS * WINT FAC**WINTER * N2030**NB2030 * N2070**NB2070 * N2120**NB2120 * N2130**NB2130 * N2240**NB2240 * N2260**NB2260 * N2280**NB2280 * N2320**NB2320 * N2340**NB2340 * N2350**NB2350 * N2390**NB2390 * N2400**NB2400 * N2430**NB2430 * N2440**NB2440 * N2450**NB2450 * N2500**NB2500 * N2510**NB2510 * N2530**NB2530 * N2541**NB2541 * N2580**NB2580 * N2590**NB2590 * N2710**NB2710 * N2720**NB2720 * N3030**NB3030 * N3040**NB3040 * N3060**NB3060 * N3080**NB3080 * N3090**NB3090 * N3150**NB3150 * N3180**NB3180 * N3190**NB3190 * N3280**NB3280 * N3320**NB3320 *((LAKE FAC**LAKE * RIV FAC**RIVER * RAV FAC**RAVINE * PARK_FAC**PARK * TRAF_FAC**TRAFFIC * COMM_FAC**COM_MF * BLV * LSIZ FAC**LSIZ EXP * VAC FAC**VACANT) + (B1 * LIVAREAZ * BSIZ_FAC**BSIZ_EXP * BILEV**BILEVEL * SPLITLEV**SPLIT * SPLCRWL**SPLTCRWL * TWOSTY**TWO_STY * BRICK**ALLBRICK * TILEROOF**PREMROOF + BSMT*BSMTAREA + BSMTFIN*FBSTAREA + ATTGAR*ATTGARSZ + DETGAR*DETGARSZ + FP MAS*FPMASON + FP ZERO*FPZERCL) * (Q5**QUAL5 * Q6**QUAL6 * Q7**QUAL7 * PERGOOD**PCTGOOD)). ``` ### **Appendix 1 (Continued)** ### Ada County (Boise) ``` VALUE = TIMEFAC**MONTHS * MLS100**MLS_100 * MLS200**MLS_200 * MLS300**MLS_300 * MLS400**MLS_400 * MLS500**MLS_500 * MLS550**MLS_550 * MLS600**MLS 600 * MLS700**MLS 700 * MLS750**MLS 750 * MLS800**MLS_800 * MLS900**MLS_900 * MLS1000**MLS_1000 * MLS1010**MLS_1010 * MLS1020**MLS_1020 * MLS1030**MLS_1030 * MLS1100**MLS_1100 * ((BLV * LSIZ FAC**LSIZ EXP * VAC FAC**VACANT) + (B1*LIVAREAZ * TWOSTY**TWOSTORY * SPLITLV**SPLIT * TRILEVL**TRILEVEL * SIMP_SHP**SHP_SIMP * IRRG_SHP**SHP_IRRG * CPLX_SHP**SHP_CPLX * AC**AIRCOND * PREM_RF**ROOF_GD + BSMTFIN*BSMT FIN + BSMTUNF*BSMT UNF + LWRUNF*LWR UNF + PORCH*PORCHSF + PATIO*PATIOSF + DECK*DECKSF + GARAGE*GARAGECP + POOL*POOLSF + FIREPLAC*FPLACE) * (QUAL3**Q3 * QUAL5**Q5 *QUAL6**Q6 * QUAL7**Q7 * PERGOOD**PCTGOOD * REMODFAC**REMODEL)). ``` ## Appendix 2-A Results of Nonlinear MRA for Traditional Feedback Model Structure: Jefferson County (Area 4) - Improved Sales Nonlinear Regression Summary Statistics Dependent Variable SALE_PRI | Source | DF | Sum of Squares Mean Square | |---|------|---| | Regression
Residual
Uncorrected Total | | 2.052175E+14 2414323339472
1411932161544 311478526.703
2.066294E+14 | | (Corrected Total) | 4617 | 3.445049E+13 | R squared = 1 - Residual SS / Corrected SS = .95902 | Parameter | Estimate | Asymptotic
Std. Error | Asymptot
Confidence
Lower | | |---|--|--|--|---| | B1 BSMT BSMTFIN PORCH_SF BALC_SF GARAGE WALK_OUT BATH FIREPLAC POOL QUAL2 QUAL2 QUAL4 QUAL5 BI STY2 SPLT AC | 45.248290998
10.255385575
9.812872089
17.373544972
10.943130917
19.445162062
6755.0278643
2999.9743925
2476.7529649
12651.096349
.942547970
1.197403614
1.315568517
.791409025
.885247297
.897217463
1.031741392 | 2.321204983
1.001797083
.769694192
2.572122665
2.058229237
2.608288689
912.22771253
820.43125386
612.58074091
2746.5338768
.024174530
.014128258
.021629658
.027031796
.012211611
.014809052
.007307206 | 40.697597748
8.291374960
8.303896281
12.330930753
6.907998316
14.331644807
4966.6168773
1391.5292112
1275.7961068
7266.5511369
.895154107
1.169705342
1.273163844
.738413528
.861306587
.868184501
1.017415707 | 49.798984249 12.219396189 11.321847898 22.416159192 14.978263517 24.558679316 8543.4388513 4608.4195738 3677.7098230 18035.641560 .989941833 1.225101886 1.357973190 .844404521 .909188006 .926250425 1.046067077 | | BRICK PCTGOOD BSIZ_EXP TRAF_FAC VIEW_FAC WATERFAC GOLF_FAC OPEN_FAC PARK_FAC COMM_FAC SOIL_FAC TIMEFAC N701 N702 N703 N704 N706 N801 N803 | 1.028324924 1.579814478 .000752690 .909922012 1.111753174 2.103584886 1.196162274 1.089478635 1.275235163 .898542850 .473688711 1.005408792 .987740621 1.378663480 1.032218673 1.039184789 .984998215 1.147125150 .997540871 | .009511219
.057106901
.042549251
.009389186
.011118220
.078208550
.039599130
.013273255
.056842720
.036623676
.055798778
.000188217
.023387415
.025656468
.017407515
.017980565
.014049693
.017867356 | 1.009678298 1.467857114082664583 .891514631 1.089956042 1.950258004 1.118528676 1.063456584 1.163795724 .826742593 .364295907 1.005039794 .941889887 1.328364297 .998091459 1.003934118 .957453968 1.112096423 .970443931 | 1.046971549 1.691771842 .084169963 .928329394 1.133550306 2.256911767 1.273795872 1.115500686 1.386674602 .970343107 .583081515 1.005777790 1.033591354 1.428962663 1.066345886 1.074435461 1.012542462 1.182153876 1.024637811 | ### **Appendix 2-A (Continued)** ``` 1.007277902 1.077478703 N804 1.042378302 .017903915 N805 1.040022706 .015868784 1.008912155 1.071133258 .957969878 1.017741322 N806 .987855600 .015244026 N807 .998794266 .014252364 .970852685 1.026735846 N808 1.011157474 .018021539 .975826474 1.046488474 1.022783049 .013959761 .995415112 1.050150985 N809 N810 1.036456636 .022069554 .993189553 1.079723720 .992754011 N811 .964611349 .014354931 .936468687 N812 .999316649 .014352702 .971178357 1.027454941 1.051644018 1.130237641 N814 1.090940829 .020044408 .017471676 .940676709 N815 .974929710 1.009182712 .016698578 .973017456 .940280103 1.005754808 N816 N902 1.061660068 .022760681 1.017038039 1.106282097 N903 .921464749 .018426465 .885339896 .957589602 1.031102478 1.002417563 N904 .014631522 1.059787394 N1701 .996098438 .015755802 .965209386 1.026987491 N1702 .994215476 .022567620 .949971941 1.038459012 N1703 .959745050 .024638141 .911442284 1.008047817 N1704 .963475726 .020714394 .922865417 1.004086036 N1705 .979399852 .021989650 .936289419 1.022510286 N1706 .975860953 .024004444 .928800541 1.022921364 N1707 .982199549 .014625214 .953526999 1.010872098 1.065680561 1.028107216 1.103253907 N1708 .019165308 N1709 1.058849966 .021216894 1.017254512 1.100445420 N1710 1.045689392 .020111819 1.006260423 1.085118361 N1711 1.031031600 .014837137 1.001943579 1.060119620 N1712 1.422615385 .024028128 1.375508542 1.469722228 N1713 .876157673 .029478207 .818366018 .933949329 N1715 1.016815651 .014084914 .989202354 1.044428949 N1801 1.041954291 .014481258 1.013563966 1.070344615 N1802 1.083317479 .014750263 1.054399773 1.112235186 N1803 .985489850 .020379439 .945536215 1.025443485 1.508325051 1.458579656 1.558070446 N1804 .025373993 N1805 1.105209188 .017922125 1.070073087 1.140345289 N1806 1.273074293 .019907052 1.234046766 1.312101819 N1807 1.218355102 .017403959 1.184234858 1.252475347 N1808 1.091534352 .021228550 1.049916047 1.133152658 N1809 1.095945257 .016278637 1.064031193 1.127859322 N1810 1.025345186 .019943669 .986245872 1.064444499 N1811 1.363696381 1.325628728 1.401764034 .019417443 1.095823853 N1813 .017032467 1.062431914 1.129215792 N1814 1.257790487 .019965932 1.218647528 1.296933447 1.028277724 1.001033966 1.055521482 N1815 .013896420 N1816 1.077811616 .024038305 1.030684821 1.124938411 N2901 1.299228209 .022729381 1.254667542 1.343788876 N3001 1.467330124 .021587236 1.425008618 1.509651630 N3004 1.385393718 .023087931 1.340130118 1.430657318 BLV 71005.560760 2990.3143949 65143.086900 76868.034619 .236524585 .014021392 .209035822 .264013349 LSIZ_EXP ``` ## Appendix 2-B Results of Nonlinear MRA for Traditional Feedback Model Structure: Edmonton (Clareview Market Area) - Improved Sales Nonlinear Regression Summary Statistics Dependent Variable SALE_PRI Source DF Sum of Squares Mean Square Regression 61 5.607536E+13 919268162984 Residual 3421 319801122771 93481766.3755 Uncorrected Total 3482 5.639516E+13 (Corrected Total) 3481 2701392065422 R squared = 1 - Residual SS / Corrected SS = .88162 | Parameter Estimate Std. Error Lower Upper B1 |
---| | B1 | | BSMT | | BSMTFIN 112.59744517 9.825975409 93.332071125 131.86281922 ATTGAR 592.26182267 30.015981745 533.41075785 651.11288749 DETGAR 354.66779269 20.600077777 314.27809221 395.05749318 FP_MAS 6961.9107121 1007.8212714 4985.9182068 8937.9032173 FP_ZERO 5441.8393327 629.69573946 4207.2215517 6676.4571138 Q5 1.042791267 .009321265 1.024515456 1.061067077 Q6 1.275466909 .024962449 1.226524092 1.324409726 Q7 1.366211049 .0503397583 1.267398641 1.465023456 BILEV .999009858 .015681962 .968262899 1.029756817 SPLITLEV 1.312110197 .060186397 1.194105275 1.430115118 SPLCRWL 1.345233819 .064138753 1.219479682 1.470987957 TWOSTY .950623792 .026020879 .899605756 1.001641827 BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP .017141568 .088879770 .191404371 .157121235 LAKE_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.026657826 .015549827 .996169939 1.050313040 TRAF_FAC .997687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | ATTGAR592.2618226730.015981745533.41075785651.11288749DETGAR354.6677926920.600077777314.27809221395.05749318FP_MAS6961.91071211007.82127144985.91820688937.9032173FP_ZERO5441.8393327629.695739464207.22155176676.4571138Q51.042791267.0093212651.0245154561.061067077Q61.275466909.0249624491.2265240921.324409726Q71.366211049.0503975831.2673986411.465023456BILEV.999009858.015681962.9682628991.029756817SPLITLEV1.312110197.0601863971.1941052751.430115118SPLCRWL1.345233819.0641387531.2194796821.470987957TWOSTY.950623792.026020879.8996057561.001641827BRICK1.137376896.078847020.9827848801.291968911TILEROOF1.144887923.0232665241.0992702341.1990505612PCTGOOD2.311751848.1402535872.0367625782.586741119BSIZ_EXP-017141568.088879770191404371.157121235LAKE_FAC1.034023866.0172790991.0001454681.067902263RAV_FAC1.026657826.015549827.9961699391.057145713PARK_FAC1.028131995.0113130641.0059509501.050313040TRAF_FAC.977687737.003904169.970032998.985342475COMM_FAC.986295548.007710900.97117 | | DETGAR 354.66779269 20.600077777 314.27809221 395.05749318 FP_MAS 6961.9107121 1007.8212714 4985.9182068 8937.9032173 FP_ZERO 5441.8393327 629.69573946 4207.2215517 6676.4571138 Q5 1.042791267 .009321265 1.024515456 1.061067077 Q6 1.275466909 .024962449 1.226524092 1.324409726 Q7 1.366211049 .050397583 1.267398641 1.465023456 BILEV .999009858 .015681962 .968262899 1.029756817 SPLITLEV 1.312110197 .060186397 1.194105275 1.430115118 SPLCRWL 1.345233819 .064138753 1.219479682 1.470987957 TWOSTY .950623792 .026020879 .899605756 1.001641827 BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP017141568 .088879770191404371 .157121235 LAKE_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .997687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | FP_MAS6961.91071211007.82127144985.91820688937.9032173FP_ZERO5441.8393327629.695739464207.22155176676.4571138Q51.042791267.0093212651.0245154561.061067077Q61.275466909.0249624491.2265240921.324409726Q71.366211049.0503975831.2673986411.465023456BILEV.999009858.015681962.9682628991.029756817SPLITLEV1.312110197.0601863971.1941052751.430115118SPLCRWL1.345233819.0641387531.2194796821.470987957TWOSTY.950623792.026020879.8996057561.001641827BRICK1.137376896.078847020.9827848801.291968911TILEROOF1.144887923.0232665241.0992702341.190505612PCTGOOD2.311751848.1402535872.0367625782.586741119BSIZ_EXP017141568.088879770191404371.157121235LAKE_FAC1.034023866.0172790991.0001454681.067902263RAV_FAC1.026657826.015549827.9961699391.057145713PARK_FAC1.028131995.0113130641.0059509501.050313040TRAF_FAC.977687737.003904169.970032998.985342475COMM_FAC.986295548.007710900.9711771131.001413984N2030.933754553.010527995.913112759.954396347 | | FP_ZERO5441.8393327629.695739464207.22155176676.4571138Q51.042791267.0093212651.0245154561.061067077Q61.275466909.0249624491.2265240921.324409726Q71.366211049.0503975831.2673986411.465023456BILEV.999009858.015681962.9682628991.029756817SPLITLEV1.312110197.0601863971.1941052751.430115118SPLCRWL1.345233819.0641387531.2194796821.470987957TWOSTY.950623792.026020879.8996057561.001641827BRICK1.137376896.078847020.9827848801.291968911TILEROOF1.144887923.0232665241.0992702341.190505612PCTGOOD2.311751848.1402535872.0367625782.586741119BSIZ_EXP017141568.088879770191404371.157121235LAKE_FAC1.085604282.0094467721.0670823971.104126167RIV_FAC1.034023866.0172790991.0001454681.067902263RAV_FAC1.026657826.015549827.9961699391.057145713PARK_FAC1.028131995.0113130641.0059509501.050313040TRAF_FAC.977687737.003904169.970032998.985342475COMM_FAC.986295548.007710900.9711771131.001413984N2030.933754553.010527995.913112759.954396347 | | Q5 | | Q6 1.275466909 .024962449 1.226524092 1.324409726 Q7 1.366211049 .050397583 1.267398641 1.465023456 BILEV .999009858 .015681962 .968262899 1.029756817 SPLITLEV 1.312110197 .060186397 1.194105275 1.430115118 SPLCRWL 1.345233819 .064138753 1.219479682 1.470987957 TWOSTY .950623792 .026020879 .899605756 1.001641827 BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP 017141568 .088879770 191404371 .157121235 LAKE_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 | | Q7 | | BILEV .999009858 .015681962 .968262899 1.029756817 SPLITLEV 1.312110197 .060186397 1.194105275 1.430115118 SPLCRWL 1.345233819 .064138753 1.219479682 1.470987957 TWOSTY .950623792 .026020879 .899605756 1.001641827 BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP017141568 .088879770191404371 .157121235 LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | SPLITLEV 1.312110197 .060186397 1.194105275 1.430115118 SPLCRWL 1.345233819 .064138753 1.219479682 1.470987957 TWOSTY .950623792 .026020879 .899605756 1.001641827 BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP 017141568 .088879770 191404371 .157121235 LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759< | | SPLCRWL1.345233819.0641387531.2194796821.470987957TWOSTY.950623792.026020879.8996057561.001641827BRICK1.137376896.078847020.9827848801.291968911TILEROOF1.144887923.0232665241.0992702341.190505612PCTGOOD2.311751848.1402535872.0367625782.586741119BSIZ_EXP017141568.088879770191404371.157121235LAKE_FAC1.085604282.0094467721.0670823971.104126167RIV_FAC1.034023866.0172790991.0001454681.067902263RAV_FAC1.026657826.015549827.9961699391.057145713PARK_FAC1.028131995.0113130641.0059509501.050313040TRAF_FAC.977687737.003904169.970032998.985342475COMM_FAC.986295548.007710900.9711771131.001413984N2030.933754553.010527995.913112759.954396347 | | TWOSTY | | BRICK 1.137376896 .078847020 .982784880 1.291968911 TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP017141568 .088879770191404371 .157121235 LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995
.913112759 .954396347 | | TILEROOF 1.144887923 .023266524 1.099270234 1.190505612 PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP017141568 .088879770191404371 .157121235 LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | PCTGOOD 2.311751848 .140253587 2.036762578 2.586741119 BSIZ_EXP 017141568 .088879770 191404371 .157121235 LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | BSIZ_EXP017141568 .088879770191404371 .157121235
LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167
RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263
RAV_FAC 1.026657826 .015549827 .996169939 1.057145713
PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040
TRAF_FAC .977687737 .003904169 .970032998 .985342475
COMM_FAC .986295548 .007710900 .971177113 1.001413984
N2030 .933754553 .010527995 .913112759 .954396347 | | LAKE_FAC 1.085604282 .009446772 1.067082397 1.104126167 RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | RIV_FAC 1.034023866 .017279099 1.000145468 1.067902263 RAV_FAC 1.026657826 .015549827 .996169939 1.057145713 PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | RAV_FAC 1.026657826 .015549827 .996169939 1.057145713
PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040
TRAF_FAC .977687737 .003904169 .970032998 .985342475
COMM_FAC .986295548 .007710900 .971177113 1.001413984
N2030 .933754553 .010527995 .913112759 .954396347 | | PARK_FAC 1.028131995 .011313064 1.005950950 1.050313040 TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | TRAF_FAC .977687737 .003904169 .970032998 .985342475 COMM_FAC .986295548 .007710900 .971177113 1.001413984 N2030 .933754553 .010527995 .913112759 .954396347 | | COMM_FAC .986295548 .007710900 .971177113 1.001413984
N2030 .933754553 .010527995 .913112759 .954396347 | | N2030 .933754553 .010527995 .913112759 .954396347 | | | | N2070 932860693 010567007 912142408 953578977 | | | | N2120 .909879956 .020373286 .869934917 .949824995 | | N2130 .959211313 .011589329 .936488607 .981934020 | | N2240 .996526610 .010110780 .976702831 1.016350389 | | N2260 .993327361 .009390356 .974916088 1.011738633 | | N2280 .926468255 .009644187 .907559305 .945377204 | | N2320 .918314777 .013993705 .890877912 .945751643 | | N2340 .983689539 .009217291 .965617587 1.001761491 | | N2350 .889876439 .012303899 .865752704 .914000173 | | N2390 .936111698 .009594336 .917300489 .954922907 | | N2400 1.032002005 .014363528 1.003840044 1.060163965 | ### Appendix 2-B (Continued) | N2430 | .918038327 | .009573700 | .899267579 | .936809076 | |----------|--------------|--------------|--------------|--------------| | N2440 | .998950349 | .011674785 | .976060093 | 1.021840605 | | N2450 | .968690587 | .007933791 | .953135139 | .984246036 | | N2500 | 1.011911247 | .009875077 | .992549602 | 1.031272892 | | N2510 | .987663874 | .008258828 | .971471140 | 1.003856608 | | N2530 | .997433428 | .009622113 | .978567759 | 1.016299098 | | N2541 | .991639823 | .024641468 | .943326340 | 1.039953306 | | N2580 | .996452972 | .010879569 | .975121861 | 1.017784083 | | N2590 | .936652721 | .012346288 | .912445878 | .960859564 | | N2710 | .935663295 | .015146746 | .905965713 | .965360878 | | N2720 | .986922237 | .009907572 | .967496881 | 1.006347594 | | N3030 | .966164053 | .008378544 | .949736597 | .982591510 | | N3040 | .993746219 | .009460459 | .975197498 | 1.012294941 | | N3060 | .967570098 | .009056255 | .949813882 | .985326314 | | N3080 | 1.004220946 | .012266556 | .980170430 | 1.028271463 | | N3090 | .961739837 | .009663604 | .942792818 | .980686855 | | N3150 | .989271818 | .011272464 | .967170375 | 1.011373261 | | N3180 | .944472990 | .008249341 | .928298856 | .960647124 | | N3190 | 1.021249165 | .011658382 | .998391068 | 1.044107262 | | N3280 | .947123881 | .009684896 | .928135115 | .966112648 | | N3320 | .996827114 | .010803570 | .975645012 | 1.018009217 | | BLV | 63780.467094 | 3571.8310217 | 56777.329207 | 70783.604981 | | LSIZ_EXP | .189178453 | .019058199 | .151811849 | .226545058 | | TIMEFAC | 1.002174414 | .000128447 | 1.001922572 | 1.002426255 | | WINT_FAC | .978820842 | .003117748 | .972708006 | .984933679 | ## Appendix 2-C Results of Nonlinear MRA for Traditional Feedback Model Structure: Ada County (Boise) - Improved Sales Nonlinear Regression Summary Statistics Dependent Variable SALE_PRI Source DF Sum of Squares Mean Square Regression 3.164883E+14 7360193188100 43 Residual 12778 6085696186901 476263592.651 Uncorrected Total 12821 3.225740E+14 12820 6.659406E+13 (Corrected Total) R squared = 1 - Residual SS / Corrected SS = .90862 Asymptotic 95 % Asymptotic Confidence Interval Parameter Estimate Std. Error Lower Upper 42.159909822 .757667625 40.674767889 43.645051754 **BSMTFIN** 25.577486253 .708274354 24.189162522 26.965809984 **BSMTUNF** 14.896730134 .984106659 12.967733807 16.825726462 27.947979966 1.756729605 24.504527037 31.391432895 LWRUNF 16.009799351 2.401687055 11.302133300 20.717465402 PORCH 10.187519584 1.329845584 7.580823222 12.794215945 PATIO 8.406877725 14.731440472 DECK 11.569159098 1.613285683 **GARAGE** 17.979554868 1.009334917 16.001107379 19.958002357 2.114856141 20.095275858 28.386144924 POOL 24.240710391 FIREPLAC 3363.8881135 386.98284381 2605.3438258 4122.4324011 QUAL3 .932203607 .010881272 .910874684 .953532529 QUAL5 1.179279429 .006536571 1.166466771 1.192092087 1.430915449 .010985600 1.409382028 1.452448869 **QUAL6** QUAL7 1.837639241 .018495996 1.801384320 1.873894161 TWOSTY .821937601 .007240390 .807745354 .836129849 .983325521 .974327621 SPLITLV .004590415 .992323422 .804586333 .011562453 .781922194 .827250471 TRILEVL .924435445 SIMP_SHP .942244498 .009085558 .960053551 IRRG_SHP 1.020785491 .005262998 1.010469228 1.031101755 CPLX_SHP .007729020 1.144243796 1.129093760 1.159393833 PREM_RF 1.057638868 .005427550 1.047000059 1.068277677 AC 1.100494554 .008682616 1.083475327 1.117513781 .343270939 PCTGOOD .381765352 .019638507 .420259766 .286603716 REMODEL .194766908 .046851937 .102930099 1.203762587 .007582083 1.188900570 1.218624603 MLS100 MLS200 1.193744679 .009346308 1.175424516 1.212064841 MLS300 1.125023147 .005641693 1.113964585 1.136081710 MLS400 1.027296321 .008315981 1.010995754 1.043596887 MLS500 .990140096 .006877352 .976659457 1.003620735 MLS550 .992186099 .008551707 .975423474 1.008948724 MLS600 .994608873 .008002564 .978922649 1.010295097 MLS700 1.036469848 .046720965 .944889763 1.128049932 MLS750 1.095051449 .014762568 1.066114608 1.123988291 1.091629582 1.079240054 MLS800 .006320705 1.104019111 MLS900 1.069625343 .005259042 1.059316834 1.079933851 .007447958 1.000321441 MLS1000 1.014920553 1.029519666 ## Appendix 2-C (Continued) | MLS1010 | 1.001775719 | .014688683 | .972983702 | 1.030567736 | |----------|--------------|--------------|--------------|--------------| | MLS1020 | 1.003749956 | .006109965 | .991773509 | 1.015726402 | | MLS1030 | .962140874 | .005846841 | .950680190 | .973601558 | | MLS1100 | .965575899 | .009883592 | .946202581 | .984949218 | | BLV | 30263.312483 | 978.10403021 | 28346.082206 | 32180.542760 | | LSIZ_EXP | .337045903 | .008784251 | .319827457 | .354264349 | | TIMEFAC | 1.003325891 | .000182227 | 1.002968699 | 1.003683083 | # Appendix 3-A Results of Nonlinear MRA for Traditional Feedback Model Structure: Jefferson County (Area 4) - Improved and Vacant Sales | Regression | Nonlinear R | egression Summ | mary Statistic | cs Depende | ent Variable SALE_PRI |
---|-------------|----------------|----------------|--------------|-----------------------| | Residual 4618 2.066294E+14 (Corrected Total) 4618 2.066294E+14 (Corrected Total) 4617 3.445049E+13 R squared = 1 - Residual SS / Corrected SS = .95902 Asymptotic Std. Error | Source | | DF Sum of So | quares Mean | Square | | R squared = 1 - Residual SS / Corrected SS = .95902 Asymptotic Std. Error Confidence Interval Lower Upper | Residual | 4! | 533 14119321 | 61544 311478 | | | Parameter Estimate Std. Error Confidence Interval Lower Upper B1 | (Correcte | d Total) 40 | 3.44504 | 9E+13 | | | Barameter Estimate Std. Error Confidence Interval Lower Upper | R squared | = 1 - Residua | al SS / Corre | cted SS = | .95902 | | BSMT 10.255385575 1.001797083 8.291374960 12.219396189 9SMTFIN 9.812872089 .769694192 8.303896281 11.321847898 PORCH_SF 17.373544972 2.572122665 12.330930753 22.416159192 BALC_SF 10.943130917 2.058229237 6.907998316 14.978263517 GARAGE 19.445162062 2.608288689 14.331644807 24.558679316 WALK_OUT 6755.0278643 912.22771253 4966.6168773 8543.4388513 BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009512129 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 .008664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928323994 VIEW_FAC 1.111753174 .011118220 1.089678298 1.046971549 PCTGOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 .008664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928323994 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERPAC 2.103584886 .078208550 1.950258004 2.256911767 GDF_FAC 1.096162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.098478635 .013273255 1.063456584 1.115500686 PARK_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.035913354 1.074435461 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | Parameter | Estimate | | Confidence | e Interval | | BSMT 10.255385575 1.001797083 8.291374960 12.219396189 9SMTFIN 9.812872089 .769694192 8.303896281 11.321847898 PORCH_SF 17.373544972 2.572122665 12.330930753 22.416159192 BALC_SF 10.943130917 2.058229237 6.907998316 14.978263517 GARAGE 19.445162062 2.608288689 14.331644807 24.558679316 WALK_OUT 6755.0278643 912.22771253 4966.6168773 8543.4388513 BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009512129 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 .008664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928323994 VIEW_FAC 1.111753174 .011118220 1.089678298 1.046971549 PCTGOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 .008664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928323994 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERPAC 2.103584886 .078208550 1.950258004 2.256911767 GDF_FAC 1.096162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.098478635 .013273255 1.063456584 1.115500686 PARK_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.035913354 1.074435461 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | B1 | 45.248290998 | 2.321204983 | 40.697597748 | 49.798984249 | | BSMTFIN 9.812872089 .769694192 8.303896281 11.321847898 PORCH_SF 17.373544972 2.572122665 12.300930753 22.416159192 EALC_SF 10.943130917 2.058229237 6.907998316 14.978263517 GARAGE 19.445162062 2.608288689 14.331644807 24.558679316 WALK_OUT 6755.0278643 912.22771253 4966.6168773 8543.4388513 BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .8897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 PARK_FAC 1.96162274 .039599130 1.118528676 1.273795872 .00M_FAC .898542850 .036623676 .826742593 .970343107 .970343107 .98740621 .023387415 .948098215 .1063456886 .1033934118 .1005777790 N701 .98740621 .023387415 .948098215 .106345886 N703 1.032218673 .017407515 .998091459 1.066345886 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017407515 .998091459 1.066345886 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | BALC_SF | BSMTFIN | 9.812872089 | | | | | GARAGE 19.445162062 2.608288689 14.331644807 24.558679316 WALK_OUT 6755.0278643 912.22771253 4966.6168773 8543.4388513 BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174550 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.96162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .888542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .01408693 .957453968 1.0125424662 | PORCH_SF | 17.373544972 | 2.572122665 | 12.330930753 | 22.416159192 | | WALK_OUT 6755.0278643 912.22771253 4966.6168773 8543.4388513 BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517
.021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.03591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .014049693 .957453968 1.012543876 | BALC_SF | 10.943130917 | | | | | BATH 2999.9743925 820.43125386 1391.5292112 4608.4195738 FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GDLF_FAC 1.089478635 .013273255 1.063456584 1.15500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.0033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980756 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | GARAGE | 19.445162062 | | | | | FIREPLAC 2476.7529649 612.58074091 1275.7961068 3677.7098230 POOL 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .8613306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | POOL QUAL2 12651.096349 2746.5338768 7266.5511369 18035.641560 QUAL2 .942547970 .024174530 .895154107 .989941833 QUAL4 1.197403614 .014128258 1.169705342 1.225101886 QUAL5 1.315568517 .021629658 1.273163844 1.357973190 BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .922329394 VIEW_FAC 1.111753174 .01118220 1.089956042 1.133550306 | | | | | | | QUAL2 | | | | | | | QUAL4 | | | | | | | QUAL5 BI | | | | | | | BI .791409025 .027031796 .738413528 .844404521 STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.089478635 .013273255 1.063456584 1.15500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | STY2 .885247297 .012211611 .861306587 .909188006 SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 | | | | | | | SPLT .897217463 .014809052 .868184501 .926250425 AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 | | | 012211611 | 861306587 | 909188006 | | AC 1.031741392 .007307206 1.017415707 1.046067077 BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | BRICK 1.028324924 .009511219 1.009678298 1.046971549 PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | PCTGOOD 1.579814478 .057106901 1.467857114 1.691771842 BSIZ_EXP .000752690 .042549251 082664583 .084169963 TRAF_FAC .909922012 .009389186 .891514631 .928329394 VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N704 1.039184789
.017980565 1.003934118 <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | TRAF_FAC | PCTGOOD | | | | | | VIEW_FAC 1.111753174 .011118220 1.089956042 1.133550306 WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | BSIZ_EXP | .000752690 | .042549251 | 082664583 | .084169963 | | WATERFAC 2.103584886 .078208550 1.950258004 2.256911767 GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | TRAF_FAC | .909922012 | .009389186 | .891514631 | .928329394 | | GOLF_FAC 1.196162274 .039599130 1.118528676 1.273795872 OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | VIEW_FAC | | | | | | OPEN_FAC 1.089478635 .013273255 1.063456584 1.115500686 PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | PARK_FAC 1.275235163 .056842720 1.163795724 1.386674602 COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | COMM_FAC .898542850 .036623676 .826742593 .970343107 SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | SOIL_FAC .473688711 .055798778 .364295907 .583081515 TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | TIMEFAC 1.005408792 .000188217 1.005039794 1.005777790 N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N701 .987740621 .023387415 .941889887 1.033591354 N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N702 1.378663480 .025656468 1.328364297 1.428962663 N703 1.032218673 .017407515 .998091459 1.066345886 N704 1.039184789 .017980565 1.003934118 1.074435461 N706 .984998215 .014049693 .957453968 1.012542462 N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N703 1.032218673 .017407515 .998091459 1.066345886
N704 1.039184789 .017980565 1.003934118 1.074435461
N706 .984998215 .014049693 .957453968 1.012542462
N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N704 1.039184789 .017980565 1.003934118 1.074435461
N706 .984998215 .014049693 .957453968 1.012542462
N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N706 .984998215 .014049693 .957453968 1.012542462
N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N801 1.147125150 .017867356 1.112096423 1.182153876 | | | | | | | N803 .997540871 .013821532 .970443931 1.024637811 | | 1.147125150 | | 1.112096423 | 1.182153876 | | | N803 | .997540871 | .013821532 | .970443931 | 1.024637811 | ### Appendix 3-A (Continued) | N804 | 1.042378302 | .017903915 | 1.007277902 | 1.077478703 | |----------|--------------|--------------|--------------|--------------| | N805 | 1.040022706 | .015868784 | 1.008912155 | 1.071133258 | | N806 | .987855600 | .015244026 | .957969878 | 1.017741322 | | N806 | .987855600 | .015244026 | .957969878 | 1.017741322 | | N807 | .998794266 | .014252364 | .970852685 | 1.026735846 | | И808 | 1.011157474 | .018021539 | .975826474 | 1.046488474 | | N809 | 1.022783049 | .013959761 | .995415112 | 1.050150985 | | N810 | 1.036456636 | .022069554 | .993189553 | 1.079723720 | | N811 | .964611349 | .014354931 | .936468687 | .992754011 | | N812 | .999316649 | .014352702 | .971178357 | 1.027454941 | | N814 | 1.090940829 | .020044408 | 1.051644018 | 1.130237641 | | N815 | .974929710 | .017471676 | .940676709 | 1.009182712 | | N816 | .973017456 | .016698578 | .940280103 | 1.005754808 | | N902 | 1.061660068 | .022760681 | 1.017038039 | 1.106282097 | | N903 | .921464749 | .018426465 | .885339896 | .957589602 | | N904 | 1.031102478 | .014631522 | 1.002417563 | 1.059787394 | | N1701 | .996098438 | .015755802 | .965209386 | 1.026987491 | | N1702 | .994215476 | .022567620 | .949971941 | 1.038459012 | | N1703 | .959745050 | .024638141 | .911442284 | 1.008047817 | | N1704 | .963475726 | .020714394 | .922865417 | 1.004086036 | | N1705 | .979399852 | .021989650 | .936289419 | 1.022510286 | | N1706 | .975860953 | .024004444 | .928800541 | 1.022921364 | | N1707 | .982199549 | .014625214 | .953526999 | 1.010872098 | | N1708 | 1.065680561 | .019165308 | 1.028107216 | 1.103253907 | | N1709 | 1.058849966 | .021216894 | 1.017254512 | 1.100445420 | | N1710 | 1.045689392 | .020111819 | 1.006260423 | 1.085118361 | | N1711 | 1.031031600 | .014837137 | 1.001943579 | 1.060119620 | | N1712 | 1.422615385 | .024028128 | 1.375508542 | 1.469722228 | | N1713 | .876157673 | .029478207 | .818366018 | .933949329 | | N1715 | 1.016815651 | .014084914 | .989202354 | 1.044428949 | | N1801 | 1.041954291 | .014481258 | 1.013563966 | 1.070344615 | | N1802 | 1.083317479 | .014750263 | 1.054399773 | 1.112235186 | | N1803 | .985489850 | .020379439 | .945536215 | 1.025443485 | | N1804 | 1.508325051 | .025373993 | 1.458579656 | 1.558070446 | | N1805 | 1.105209188 | .017922125 | 1.070073087 | 1.140345289 | | N1806 | 1.273074293 | .019907052 | 1.234046766 | 1.312101819 | | N1807 | 1.218355102 | .017403959 | 1.184234858 | 1.252475347 | | N1808 | 1.091534352 | .021228550 | 1.049916047 | 1.133152658 | | N1809 | 1.095945257 | .016278637 | 1.064031193 | 1.127859322 | | N1810 | 1.025345186 | .019943669 | .986245872 | 1.064444499 | | N1811 | 1.363696381 | .019417443 | 1.325628728 | 1.401764034 | | N1813 | 1.095823853 | .017032467 | 1.062431914 | 1.129215792 | | N1814 | 1.257790487 | .019965932 | 1.218647528 | 1.296933447 | | N1815 | 1.028277724 | .013896420 | 1.001033966 | 1.055521482 | | N1816 | 1.077811616 | .024038305 | 1.030684821 | 1.124938411 | | N2901 | 1.299228209 | .022729381 | 1.254667542 | 1.343788876 | | N3001 | 1.467330124 | .021587236 | 1.425008618 | 1.509651630 | | N3004 | 1.385393718 | .023087931 | 1.340130118 | 1.430657318 | | BLV | 71005.560760 | 2990.3143949 | 65143.086900 | 76868.034619 | | LSIZ_EXP | .236524585 | .014021392 | .209035822 | .264013349 | ### **Appendix 3-B Results of Nonlinear MRA for Traditional Feedback Model Structure:** Edmonton (Clareview Market Area) - Improved and Vacant Sales Nonlinear Regression Summary Statistics Dependent Variable SALE_PRI DF Sum of Squares Mean Square Source Regression 61 Residual 3421 Uncorrected Total 3482 5.607536E+13 919268162984 3421 319801122771 93481766.3755 3482 5.639516E+13 (Corrected Total) 3481 2701392065422 R squared = 1 - Residual SS / Corrected SS = .88162 | | | | Asymptot | tic 95 % | |-----------|--------------|--------------|--------------|--------------| | | | Asymptotic |
Confidence | e Interval | | Parameter | Estimate | Std. Error | Lower | Upper | | | | | | | | B1 | 465.93147927 | 49.900749089 | 368.09319285 | 563.76976569 | | BSMT | 118.14396051 | 27.374896004 | 64.471160706 | 171.81676031 | | BSMTFIN | 112.59744517 | 9.825975409 | 93.332071125 | 131.86281922 | | ATTGAR | 592.26182267 | 30.015981745 | 533.41075785 | 651.11288749 | | DETGAR | 354.66779269 | 20.600077777 | 314.27809221 | 395.05749318 | | FP_MAS | 6961.9107121 | 1007.8212714 | 4985.9182068 | 8937.9032173 | | FP_ZERO | 5441.8393327 | 629.69573946 | 4207.2215517 | 6676.4571138 | | Q5 | 1.042791267 | .009321265 | 1.024515456 | 1.061067077 | | Q6 | 1.275466909 | .024962449 | 1.226524092 | 1.324409726 | | Q7 | 1.366211049 | .050397583 | 1.267398641 | 1.465023456 | | BILEV | .999009858 | .015681962 | .968262899 | 1.029756817 | | SPLITLEV | 1.312110197 | .060186397 | 1.194105275 | 1.430115118 | | SPLCRWL | 1.345233819 | .064138753 | 1.219479682 | 1.470987957 | | TWOSTY | .950623792 | .026020879 | .899605756 | 1.001641827 | | BRICK | 1.137376896 | .078847020 | .982784880 | 1.291968911 | | TILEROOF | 1.144887923 | .023266524 | 1.099270234 | 1.190505612 | | PCTGOOD | 2.311751848 | .140253587 | 2.036762578 | 2.586741119 | | BSIZ_EXP | 017141568 | .088879770 | 191404371 | .157121235 | | LAKE_FAC | 1.085604282 | .009446772 | 1.067082397 | 1.104126167 | | RIV_FAC | 1.034023866 | .017279099 | 1.000145468 | 1.067902263 | | RAV_FAC | 1.026657826 | .015549827 | .996169939 | 1.057145713 | | PARK_FAC | 1.028131995 | .011313064 | 1.005950950 | 1.050313040 | | TRAF_FAC | .977687737 | .003904169 | .970032998 | .985342475 | | COMM_FAC | .986295548 | .007710900 | .971177113 | 1.001413984 | | N2030 | .933754553 | .010527995 | .913112759 | .954396347 | | N2070 | .932860693 | .010567007 | .912142408 | .953578977 | | N2120 | .909879956 | .020373286 | .869934917 | .949824995 | | N2130 | .959211313 | .011589329 | .936488607 | .981934020 | | N2240 | .996526610 | .010110780 | .976702831 | 1.016350389 | | N2260 | .993327361 | .009390356 | .974916088 | 1.011738633 | | N2280 | .926468255 | .009644187 | .907559305 | .945377204 | | N2320 | .918314777 | .013993705 | .890877912 | .945751643 | | N2340 | .983689539 | .009217291 | .965617587 | 1.001761491 | | N2350 | .889876439 | .012303899 | .865752704 | .914000173 | | N2390 | .936111698 | .009594336 | .917300489 | .954922907 | | N2400 | 1.032002005 | .014363528 | 1.003840044 | 1.060163965 | ## Appendix 3-B (Continued) | N2430 | .918038327 | .009573700 | .899267579 | .936809076 | |----------|--------------|--------------|--------------|--------------| | N2440 | .998950349 | .011674785 | .976060093 | 1.021840605 | | N2450 | .968690587 | .007933791 | .953135139 | .984246036 | | N2500 | 1.011911247 | .009875077 | .992549602 | 1.031272892 | | N2510 | .987663874 | .008258828 | .971471140 | 1.003856608 | | N2530 | .997433428 | .009622113 | .978567759 | 1.016299098 | | N2541 | .991639823 | .024641468 | .943326340 | 1.039953306 | | N2580 | .996452972 | .010879569 | .975121861 | 1.017784083 | | N2590 | .936652721 | .012346288 | .912445878 | .960859564 | | N2710 | .935663295 | .015146746 | .905965713 | .965360878 | | N2720 | .986922237 | .009907572 | .967496881 | 1.006347594 | | N3030 | .966164053 | .008378544 | .949736597 | .982591510 | | N3040 | .993746219 | .009460459 | .975197498 | 1.012294941 | | N3060 | .967570098 | .009056255 | .949813882 | .985326314 | | и3080 | 1.004220946 | .012266556 | .980170430 | 1.028271463 | | N3090 | .961739837 | .009663604 | .942792818 | .980686855 | | N3150 | .989271818 | .011272464 | .967170375 | 1.011373261 | | N3180 | .944472990 | .008249341 | .928298856 | .960647124 | | N3190 | 1.021249165 | .011658382 | .998391068 | 1.044107262 | | N3280 | .947123881 | .009684896 | .928135115 | .966112648 | | N3320 | .996827114 | .010803570 | .975645012 | 1.018009217 | | BLV | 63780.467094 | 3571.8310217 | 56777.329207 | 70783.604981 | | LSIZ_EXP | .189178453 | .019058199 | .151811849 | .226545058 | | TIMEFAC | 1.002174414 | .000128447 | 1.001922572 | 1.002426255 | | WINT_FAC | .978820842 | .003117748 | .972708006 | .984933679 | ## Appendix 3-C Results of Nonlinear MRA for Traditional Feedback Model Structure: Ada County (Boise) - Improved and Vacant Sales Nonlinear Regression Summary Statistics Dependent Variable SALE PRI Source DF Sum of Squares Mean Square Regression 43 3.164883E+14 7360193188100 Residual 12778 6085696186901 476263592.651 Uncorrected Total 12821 3.225740E+14 6.659406E+13 (Corrected Total) 12820 R squared = 1 - Residual SS / Corrected SS = .90862 Asymptotic 95 % Confidence Interval Asymptotic Parameter Estimate Std. Error Lower Upper 42.159909822 .757667625 40.674767889 43.645051754 В1 .708274354 24.189162522 26.965809984 **BSMTFIN** 25.577486253 .984106659 12.967733807 16.825726462 14.896730134 **BSMTUNF** 1.756729605 24.504527037 31.391432895 27.947979966 LWRUNF 2.401687055 11.302133300 20.717465402 16.009799351 PORCH 7.580823222 12.794215945 PATIO 10.187519584 1.329845584 8.406877725 14.731440472 DECK 11.569159098 1.613285683 1.009334917 16.001107379 19.958002357 17.979554868 **GARAGE** 2.114856141 20.095275858 28.386144924 POOL 24.240710391 3363.8881135 386.98284381 2605.3438258 4122.4324011 FIREPLAC QUAL3 .932203607 .010881272 .910874684 .953532529 QUAL5 1.179279429 .006536571 1.166466771 1.192092087 QUAL6 1.430915449 .010985600 1.409382028 1.452448869 QUAL7 1.837639241 .018495996 1.801384320 1.873894161 TWOSTY .821937601 .007240390 .807745354 .836129849 SPLITLV .983325521 .004590415 .974327621 .992323422 TRILEVL .804586333 .011562453 .781922194 .827250471 SIMP_SHP .942244498 .009085558 .924435445 .960053551 IRRG_SHP 1.020785491 .005262998 1.010469228 1.031101755 CPLX_SHP .007729020 1.129093760 1.144243796 1.159393833 PREM RF 1.057638868 .005427550 1.047000059 1.068277677 AC 1.100494554 .008682616 1.083475327 1.117513781 **PCTGOOD** .381765352 .019638507 .343270939 .420259766 REMODEL .194766908 .046851937 .102930099 .286603716 MLS100 1.203762587 .007582083 1.188900570 1.218624603 MLS200 1.193744679 .009346308 1.175424516 1.212064841 MLS300 1.125023147 .005641693 1.113964585 1.136081710 MLS400 1.027296321 .008315981 1.010995754 1.043596887 MLS500 .990140096 .006877352 .976659457 1.003620735 MLS550 .992186099 .008551707 .975423474 1.008948724 .994608873 MLS600 .008002564 .978922649 1.010295097 .944889763 MLS700 1.036469848 .046720965 1.128049932 MLS750 1.095051449 .014762568 1.066114608 1.123988291 .006320705 MLS800 1.091629582 1.079240054 1.104019111 MLS900 1.069625343 .005259042 1.059316834 1.079933851 1.000321441 1.029519666 .007447958 MLS1000 1.014920553 ### **Appendix 3-C (Continued)** | MLS1010 | 1.001775719 | .014688683 | .972983702 | 1.030567736 | |----------|--------------|--------------|--------------|--------------| | MLS1020 | 1.003749956 | .006109965 | .991773509 | 1.015726402 | | MLS1030 | .962140874 | .005846841 | .950680190 | .973601558 | | MLS1100 | .965575899 | .009883592 | .946202581 | .984949218 | | BLV | 30263.312483 | 978.10403021 | 28346.082206 | 32180.542760 | | LSIZ_EXP | .337045903 | .008784251 | .319827457 | .354264349 | | TIMEFAC | 1.003325891 | .000182227 | 1.002968699 | 1.003683083 |